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Significance

Assessments of alternative 
mitigation strategies to limit the 
impact of global change 
increasingly rely on simulations 
of Earth System Models (ESMs). 
In the tropics, a major 
biodiversity refuge and a net sink 
for anthropogenic carbondioxide 
emissions, ESMs consistently 
project that forests will thrive 
through the century due to 
enhanced plant photosynthesis. 
Using an ESM that accounts for 
the simultaneous effect of fires, 
water stress, and plant 
competition, we found that up to 
40% of Amazon forests may 
begin to convert to savanna 
before mid-century under high 
emission scenarios. These results 
point to reassessing the 
resilience of tropical forests to 
climate-induced disturbances 
and urge action to reduce carbon 
emissions to prevent tropical 
forest degradation.
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Tropical forests contribute a major sink for anthropogenic carbon emissions essential to 
slowing down the buildup of atmospheric CO2 and buffering climate change impacts. 
However, the response of tropical forests to more frequent weather extremes and long- 
recovery disturbances like fires remains uncertain. Analyses of field data and ecological 
theory raise concerns about the possibility of the Amazon crossing a tipping point leading 
to catastrophic tropical forest loss. In contrast, climate models consistently project an 
enhanced tropical sink. Here, we show a heterogeneous response of Amazonian carbon 
stocks in GFDL-ESM4.1, an Earth System Model (ESM) featuring dynamic disturbances 
and height-structured tree–grass competition. Enhanced productivity due to CO2 fer-
tilization promotes increases in forest biomass that, under low emission scenarios, last 
until the end of the century. Under high emissions, positive trends reverse after 2060, 
when simulated fires prompt forest loss that results in a 40% decline in tropical forest 
biomass by 2100. Projected fires occur under dry conditions associated with El Niño 
Southern Oscillation and the Atlantic Multidecadal Oscillation, a response observed 
under current climate conditions, but exacerbated by an overall decline in precipitation. 
Following the initial disturbance, grassland dominance promotes recurrent fires and 
tree competitive exclusion, which prevents forest recovery. EC-Earth3-Veg, an ESM 
with a dynamic vegetation model of similar complexity, projected comparable wildfire 
forest loss under high emissions but faster postfire recovery rates. Our results reveal the 
importance of complex nonlinear responses to assessing climate change impacts and the 
urgent need to research postfire recovery and its representation in ESMs.

tropical forest | wildfires | forest recovery | earth system model

Tropical forests are a major reservoir of biodiversity that contribute key ecosystem services 
to the regulation of Earth’s climate and carbon cycle. Recent studies raise concerns about 
the ability of tropical forests to sustain these services in the face of global change. For 
example, forest inventories provide direct evidence of a slowing sink in intact tropical 
forests (1, 2). This trend may be further aggravated in areas affected by land degradation, 
deforestation, and long-recovery disturbances associated with the increased frequency of 
weather extremes (3). The widespread and intense droughts observed in South America 
in recent years—2005, 2010, and 2015 to 2016—sparked severe, primarily intentional 
fires associated with land management (4) that burned millions of hectares of primary 
forests in the drier portions of the Amazon Basin and released vast amounts of CO2 to 
the atmosphere (5–7). It is unclear whether such extreme disturbances represent an actual 
threat to the resilience of tropical forests, but they add to growing concerns about the 
possibility of a tipping point for the Amazon system (8) beyond which the remaining 
forest would dry out, turning forest to savanna (9).

The literature on Amazonian tipping points is in disagreement, with alternative bodies 
of evidence making opposite predictions. Empirical relationships between annual rainfall 
and vegetation type (forest vs. savanna vs. grassland) and simple models of tree–grass 
competition and fire suggest that tree vs. grass cover represents alternative stable states 
(10, 11). Savanna grasses favor the occurrence of fires by retaining highly flammable erect 
leaves and stems through the dry season (rather than their abscission) (12). Fire kills tree 
saplings that would eventually overtop the grasses and prevents competitive exclusion. 
Trees are much less flammable and decrease the likelihood of fires, granting saplings the 
time needed to replace trees that die and to fill gaps in the forest canopy. However, in an 
extremely dry year, forest patches can burn and rapidly convert to grassland, and a string 
of unusually wet years can allow saplings to overtop grasses and slowly convert savanna 
back to forest (13) (Fig. 1). These ecological mechanisms anticipate the possibility of a 
tipping point in the near future—a large loss of up to 20 to 40% of tropical forest (14) 
under rainfall regimes projected by climate models. Regional ecosystem–fire models further 
stress how drought-induced fires threaten the stability of Amazon forests (15), and how 
fragmentation and changes in land use might enhance the impact of fires under future 
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drier conditions (16). However, these projections do not account 
for physiological factors such as CO2 fertilization that may benefit 
trees and prevent a tropical-forest tipping point.

Modern Earth System Models (ESMs), which include CO2 
fertilization and climate–vegetation feedbacks often missing from 
ecological models, come to the opposite conclusion. Although the 
first comprehensive ESM with dynamic vegetation projected large-
scale dieback of the Amazon under rapid climate warming (17), 
recent ESMs consistently projected that tropical forests will thrive 
through the century (18, 19), maintaining both the “natural” trop-
ical carbon sink and the viability of emission reduction initiatives 
based on reforestation [e.g., the Bonn Challenge (20)]. However, 
the computational burden of simulating coupled global climate 
and the carbon cycle often results in the adoption of a relatively 
simple representation of land vegetation (21). These ESMs do not 
include the ecological mechanisms responsible for the tipping 
point predicted by the ecological literature, but increasingly do 
project the drying that causes it, particularly in the Amazon 
(22–24).

In this paper, we bring these two bodies of work together 
by analyzing an ESM that includes the mechanisms present 
in both the alarming ecological literature (e.g., height-struc-
tured plant competition, grass fire feedbacks, and tree shade–
fire suppression) and the reassuring climatological literature 
(CO2 fertilization and large-scale climate–vegetation feed-
backs; see also Fig. 1). Specifically, we analyze recent trends 
and future projections of tropical forest biomass and fire car-
bon emissions using GFDL-ESM4.1 (25), a fully coupled 

global climate and carbon cycle model contributing to Phase 
6 of the Coupled Model Intercomparison Project (CMIP6) (26). 
The terrestrial biosphere component of GFDL-ESM4.1 
(LM4.1) simulates vegetation dynamics by following the fate 
of individual demographic cohorts of multiple, competing 
vegetation types (27), including tropical trees and grasses. 
Realistic patch dynamics emerge through the simulation of 
multiple tiles within each ESM grid cell and subgrid scale 
disturbances like fires (28, 29). The outcome of height-struc-
tured competition among vegetation types and fires results in 
a mosaic of patches (tiles) with a varying degree of tree dom-
inance, ranging from pure grasslands to forests through 
savanna landscapes. We focused on the response of tropical 
vegetation during global simulations for the 21st century 
under the low- and high-end emission forcing from the plau-
sible Shared Socioeconomic Pathways (30) (SSP1-2.6 and 
SSP5-8.5, respectively) and briefly comment on results for 
intermediate emission scenarios. We first examined divergent 
responses in projected trends of tropical vegetation biomass 
across biogeographical realms. We analyzed the role of cli-
mate-induced fires as a driver of projected declines in the 
Amazon under high emissions. Finally, we used both the pres-
ent-day observations and simulation results to assess the 
robustness of GFDL-ESM4.1 projections. We analyzed the 
subset of CMIP6 ESMs featuring dynamic vegetation and 
fires, conducting a more detailed comparison of ESM4.1 and 
EC-Earth3-Veg (31) projections, the two ESMs implementing 
complex vegetation dynamics.

Fig. 1. Emergence of alternative states and hysteresis in the structure of tropical vegetation along a gradient of water availability. The schematic highlights 
key mechanisms implemented in the dynamic land model LM4.1 embedded in GFDL-ESM4.1. Low precipitation regimes favor the dominance of grasslands and 
savannas where seasonal fuel accumulation promotes recurrent fires that keep a state of arrested succession. High precipitation regimes converge toward a 
high tree cover state where the closed tree canopy inhibits grasses, reduces evaporative water loss, and increases transpiration to enhance moisture recycling 
at regional scales. Fire and humidity feedback mechanisms reinforce the resilience of each state and result in their coexistence at intermediate precipitation 
levels, where the dominant formation becomes contingent to past conditions. After a string of wet years, trees may be able to displace grasses, form a closed 
canopy, and reach a new alternative equilibrium. As conditions become drier, a closed forest canopy resiliently keeps humidity and prevents its own collapse 
until disturbances like fires prompt an abrupt transition to the low cover state.D
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Results

Projected Changes in Tropical Tree Biomass. GFDL-ESM4.1 
simulates a distinct response of forest carbon stocks across the 
tropical biome and among climate change scenarios. The model 
concurs with observations in predicting a larger forest biomass 
in the Paleotropics (tropical areas of Africa and Asia) than in the 
Neotropics (tropical Americas) under current climate conditions 
(22.1 vs. 18.8 kg C m−2, Fig.  2A and SI Appendix, Fig. S1). 
Projection experiments suggest that climate change will exacerbate 
regional differences in tropical forest biomass. GFDL-ESM4.1 
projects an increase of forest biomass in the Paleotropics of 0.27 
and 0.48 (% per year) under scenarios SSP1-2.6 and SSP5-8.5, 
respectively. At the same time, there is a diverging response to 
greenhouse gas (GHG) forcing in the Neotropics. Forest biomass 
increases steadily but at a slower pace under SSP1-2.6 (0.17% 
per year), a trend paralleled under the high emissions SSP5-8.5 
until 2060, when biomass suddenly starts to decay to levels 40% 
below the initial stock (SI Appendix, Fig. S1A). Experiments run 
under intermediate scenarios resulted in similar qualitative trends 
to those projected for the low- and high-end scenarios; GFDL-
ESM4.1 projects a smooth increase in tree biomass under SSP2-
4.5, but rapid forest decline after 2080 under scenario SSP3-7.0 
(SI Appendix, Fig. S2).

Examination of tree biomass trajectories at individual grid cells 
dominated by forests at the start of the simulation reveals a het-
erogeneous response under SSP5-8.5 (Fig. 2B). Some cells feature 
local increases in tree biomass that remain consistent with the 
positive effect of CO2 fertilization on photosynthesis. On the 
contrary, fires caused declines in tree biomass in half of the grid 
cells, leading to biomasses below 5 kg C m−2 (32%) in the 
Amazonia by the end of the simulation (Fig. 2B and SI Appendix, 
Figs. S3 and S4). This heterogeneous response occurs at interme-
diate precipitation levels where either savannas or forests dominate 
the present-day tropical landscapes (11), suggesting an emergent 

transition between alternative stable states in GFDL-ESM4.1 
(Fig. 2C and SI Appendix, Fig. S5).

Drivers of Projected Natural Fires in the Amazon. The occurrence 
and impact of nonagricultural fires in GFDL-ESM4.1 is an 
emergent process modulated by a set of interacting factors that 
depend on meteorological conditions, human population density, 
and vegetation status and functioning (28). Analyzing projected 
trends in these factors revealed that decreases in soil moisture 
and relative humidity prompted the increased prevalence of forest 
fires in the Amazon under SSP5-8.5 (SI Appendix, Fig. S6). These 
trends parallel the decline in precipitation in the Amazon projected 
by GFDL-ESM4.1, which falls close to the ensemble mean of 
CMIP6 ESMs (22–24) (n = 21, SI Appendix, Figs. S7–S9). In 
the first years of the projection experiment, humid conditions 
prevailed during the entire year, buffering against the occurrence 
of fires (Fig. 3). As the simulation progressed, decreases in soil 
moisture and relative humidity during the dry season became 
more extreme. The sequence involves the depletion of soil 
moisture through evapotranspiration, a process which in a normal 
year contributes to keep humid conditions within the canopy. 
However, reduced water storage and enhanced water stress during 
low precipitation years with prolonged dry seasons exhausted the 
buffering mechanism and triggered a sudden amplification of 
forest fires after 2060 under SSP5-8.5 (Fig. 4).

Assessment of Simulated Fires. The possibility of abrupt responses 
under increasingly dry conditions rests on the mechanistic 
representation of fires in GFDL-ESM4.1. Simulated fires mimic 
observed, large-scale gradients in the distribution, intensity, and 
seasonality of fires detected by satellites across the tropics during 
the last two decades (SI Appendix, Figs. S10–S15). Like other 
CMIP6 models, GFDL-ESM4.1 tends however to overestimate 
fire intensity and extent along biome boundaries and in tropical 
regions with high cloud cover, biases that remain consistent with 

Fig. 2. (A) Left: Distribution of total tree biomass in the Neotropics and in the Paleotropics at the end of GFDL-ESM4.1 simulations during the historical period 
(the boxplots show the median and central interquartile range). Right: Projected trends in biomass under scenarios SSP1-2.6 and SSP5-8.5 (values normalized 
to the initial stock). (B) Projected trends in total tree biomass in the Neotropics based on GFDL-ESM4.1 global simulations under CMIP6 emission scenarios 
SSP1-2.6 and SSP5-8.5. Each line corresponds to the dynamics of natural tropical forests in an individual grid cell location (i.e., tiles that were unaffected by 
changes in land use). Trajectories showing a decrease in total biomass are highlighted with a purple hue. Flames along the abscissa indicate years with high 
carbon emissions due to fires. The complementary SI Appendix, Fig. S4 highlights the relationship between trends in tree biomass and changes in precipitation. 
Right: Distribution (as probability density function) of tree biomass by the end of the simulation for grid cell locations showing increasing or decreasing trends. 
(C) Relationship between tree biomass and mean annual precipitation (MAP, mm) at the start (2015 to 2034) and at the end (2081 to 2100) of simulations under 
scenario SSP5-8.5. The reference lines represent the probability of different vegetation types (treeless, savanna, and forest) estimated by ref. 11 based on remote 
sensing observations of vegetation cover and precipitation over South America. The background gray area delimits a bistability zone where the probability that 
forest is the dominant vegetation type is between 0.1 and 0.9. SI Appendix, Fig. S5 depicts the trajectories of each grid cell on tree biomass-MAP coordinates.D
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the known limitations of satellites to detect small fires (32, 33). 
In the Neotropics, remote climate forcing associated with  El 
Niño Southern Oscillation  (ENSO) and Atlantic Multidecadal 
Oscillation (AMO) can be used to forecast the number of fires 
during the dry season (34), providing a mechanistic link to diagnose 
the reliability of fires in GFDL-ESM4.1. Except in areas with large 
biases in simulated precipitation (i.e., the Guiana shield), GFDL-
ESM4.1 historical simulations exhibit the positive correlation 
between the Oceanic Niño Index (ONI) and interannual fire 
emissions observed over a great portion of the Amazon basin, 
especially in the northeast, as well as the greater influence of 
AMO on fire activity in the southern Amazonia (r >0.7 in both 
cases, Fig. 4). These patterns are not reproduced by other CMIP6 
models (SI Appendix, Figs. S16–S18). ESM projections concur 
in that ENSO events are becoming more intense with global 
warming (35, 36), a trend that indirectly suggests an increased 
likelihood of dry conditions favoring fire activity in the Amazon.

Projected Responses of Tropical Vegetation in CMIP6 ESMs. The 
emergence of abrupt responses to external forcing is a desirable, 
albeit rarely documented feature of ESMs. The timing and 
emergence of tipping points in ESMs remains highly uncertain 
(37), and previous assessments reported a low likelihood of 
abrupt change in the Amazon during this century (18, 38). We 
analyzed the output of the subset of CMIP6 models with dynamic 
vegetation and fires (n = 6, SI Appendix, Table S1) to determine 
whether other ESMs project potential forest losses due to fires 
in the period to year 2100. Although most models projected 
an increase in Amazon forest biomass during the 21st century 
under SSP5-8.5, the response to fires and GHG emissions varied 
depending on the complexity of their vegetation modules. ESMs 

with less sophisticated vegetation dynamics simulated a fairly 
homogenous response, with forests growing at a constant pace 
that resulted in a steady increase in biomass (~0.05% per year, 
Fig.  5 and SI Appendix, Fig. S19). On the contrary, the two 
ESMs featuring complex vegetation processes—GFDL-ESM4.1 
and EC-Earth3-Veg (31, 39)—simulated a more heterogeneous 
response, with huge losses due to fires and periods of fast 
vegetation growth.

Both GFDL-ESM4.1 and EC-Earth3-Veg simulated compa-
rable biomass losses due to fires (23.4 vs. 22.5% of years decreasing 
at similar rates, Fig. 5). However, rates of biomass change when 
biomass was increasing in EC-Earth3-Veg almost doubled those 
in GFDL-ESM4.1 at low biomass levels, and they tended to be 
faster than rates simulated by other CMIP6 ESMs (Fig. 5 and SI 
Appendix, Figs. S19–S21). As a consequence, the projected net 
change in biomass between 2015 and 2100 differs between these 
two models; repeated fires drag toward a regional decline in forest 
biomass in GFDL-ESM4.1, while the faster rates of biomass 
increase in EC-Earth3-Veg ultimately result in a net increase in 
biomass (SI Appendix, Fig. S22). Differences in simulated water 
availability might determine the failure of recently burned forest 
areas to recover following fires of similar magnitude. However, 
rates of biomass increase remain larger in EC-Earth3-Veg than 
that in GFDL-ESM4.1 even under similar meteorological condi-
tions. To rule out that differences between the two models emerged 
from potential biases in the simulation of precipitation extremes, 
we performed a dedicated experiment forcing GFDL-ESM4.1 
with sea surface temperature fields simulated by EC-Earth3-Veg 
to resemble its climate teleconnection patterns (i.e., the remote 
effects of ENSO and AMO). Such simulations resulted in abrupt 
forest loss (SI Appendix, Fig. S24), evidencing that underlying 

Fig. 3. Seasonal changes in GFDL-ESM4.1 fire suppression factors for soil moisture ( f
�
) and relative humidity ( f

rh
) under scenario SSP5-8.5 for a representative 

grid cell located in the Amazon. Each panel corresponds to a different period during the simulation and the green paths show the seasonal cycle of f
�
 and f

rh
 

during each year. The background color provides the combined effect of both factors on fire probability; i.e., as the green path moves toward the Upper Right 
corner of each panel, fires become more likely. See SI Appendix for details on the fire suppression factors.
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differences on the representation of vegetation dynamics and 
hydrological processes account for diverging forest responses 
between the two models under high-emission scenarios (SI 
Appendix, Table S1 and Supplementary Text). Together, these 
results point to highly uncertain postfire recovery dynamics as a 
key process to explain differences among model projections.

Discussion

Despite fires implicitly contributing to prescribed deforestation 
in SSP experimental protocols, most ESMs still ignore drought-re-
lated fire disturbance and lack a detailed representation of the 
lasting impact of fires. The paucity of ESMs featuring fires and 

Fig. 4. (A–C) Time series combining GFDL-ESM4.1 historical (1980 to 2014) and SSP5-8.5 (2015 to 2100) simulations for (A) the ONI (°C) and the AMO (°C), and 
(B) precipitation during the dry season (October–March, mm y−1; the dashed line shows the ensemble mean across n = 21 CMIP6 ESMs, see SI Appendix, Table 
S2), and (C) the rate of release of carbon lost through fires to the atmosphere (fire carbon emissions, kg C m−2 y−1) averaged (mean and 80%CI) over the Amazon. 
(D and E) Maps of the maximum absolute correlation coefficient r between annual changes in fire carbon emissions and lagged values of (D) ONI and (E) AMO 
climate teleconnection indices. The box in (D) limits the area used to summarize time series data presented in panels (B and  C). Insets provide reference maps 
based on remote sensing observations (1997 to 2014). See SI Appendix, Table S1 and Figs. S10–S18 for additional information about the simulation of fires in 
GFDL-ESM4.1 and in other CMIP6 ESMs.
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complex vegetation dynamics prevents the identification of emer-
gent constraints to reduce uncertainty in tropical forest responses 
to climate change (40). Most models project a widespread increase 
in forest biomass and suggest that the positive effect of CO2 fer-
tilization will prevail over vegetation losses under warmer and drier 
conditions, including EC-Earth3-Veg, one of the ESMs featuring 
patch dynamics and size-structured vegetation dynamics. The 
other model incorporating complex vegetation processes, GFDL-
ESM4, simulates a more heterogeneous response (41) in which 
forest biomass may decline in drier areas. ESMs lacking patch 
dynamics implement a partial decrease in biomass following fires 
that leave an unaltered forest tree size structure, obviating feedback 
mechanisms that might hinder forest recovery (4). In GFDL-
ESM4.1, fires affecting large areas trigger the formation of dis-
turbed patches with reduced tree dominance to resemble fire scars 
and their recovery after the disturbance. Lower canopy height and 
reduced forest cover favor the competition with other vegetation 
types (i.e., highly flammable C3 and C4 grasses) and increase water 
stress by reducing moisture recycling in recently burned patches, 
resulting in an easily dried and fuel-laden forest. These conditions 
hinder tree growth and can even lead to recurrent fires that keep 
the forest in a state of arrested recovery with low tree cover and 
an abundant grass layer that resembles a savanna landscape, as 
projected for drier areas in SSP5-8.5 (SI Appendix, Fig. S25). 
Importantly, EC-Earth3-Veg simulated a comparable impact of 
wildfires on tropical vegetation, but it also projected that forest 
will nonetheless thrive under high emissions due to a higher resil-
ience and faster pace of forest recovery.

As the dominance of tropical landscapes by secondary forests 
and treeless formations grows due to forest degradation and 
deforestation (42, 43), understanding the interaction of forest 
management with the dynamics of disturbance and successional 
recovery turns into an urgent need (14). Here, we found that 
climate-induced tree mortality due to fires might become a key 
driver of forest damage in the Amazon during this century, 
prompting the inclusion of fire disturbances and height-structured 
competition in ESMs. Uncertainties about the incidence of fires 
in tropical areas (33) further highlight the need of continued 
efforts to jointly improve ESM projections and satellite products. 
While the prevalence of fires also depends on highly uncertain 
projections of future precipitation and drought regimes, GFDL-
ESM4.1 fires are consistent with known climate teleconnection 
drivers and CMIP6 ESMs robustly project drier conditions in the 
Amazon (22–24). However, ESMs predicting similar fires do not 

project comparable forest losses, including EC-Earth3-Veg, a 
model with complex vegetation dynamics, cautioning the need to 
further research postfire recovery and tree–grass interactions. 
Postfire recovery dynamics emerged as a major source of uncer-
tainty of ESM projections of tropical vegetation dynamics. 
Another source of uncertainty arises from simplifying assumptions 
about the variety of vegetation types featured in most ESMs, which 
do not reflect the potential ability of compositional shifts (44) to 
buffer the impact of fires by favoring species with rapid growth or 
high bark thickness (45). Our findings align with growing con-
cerns about the resilience of tropical forests arising from observed 
increases in tree mortality and the incipient saturation of the 
Amazon tropical sink despite CO2 fertilization (1, 2) and warn 
about the potential contribution of meteorological extremes to 
advance the onset of abrupt transitions. As a consequence, our 
results call for mitigation initiatives to prevent fire-induced forest 
degradation and urge the adoption of low-emission policies to 
avoid further damaging of Amazon forest ecosystems.

Methods

Land Model in GFDL-ESM4.1. The land model LM4.1 improves the representa-
tion of ecological and plant physiological processes with respect to its antecessors 
(see SI Appendix for a description of key components of model). A key advance 
defining this model is the representation of vegetation dynamics using multiple 
competing cohorts arranged in canopy layers according to the Perfect Plasticity 
Approximation, PPA (46, 47). The model allows the formation of forest canopy 
gaps following a disturbance and represents landscape heterogeneity through 
the simulation of multiple coexisting tiles at different successional forest stages 
and distinct land uses within the same ESM grid cell. In addition, LM4.1 features a 
new plant hydraulics module (48) that combines constraints on carbon acquisition 
and hydraulic impairment that affect the survival of seedlings and understory 
plants. The model also features updated land-use routines, a prognostic dust 
emission model (49, 50), and a new state-of-the-art daily fire model, FINAL v2 
(28, 29) (SI Appendix).

To implement tropical forest vegetation, LM4.1 incorporates a dedicated veg-
etation type resembling the traits of shade-tolerant tree species dominating the 
forest canopy at Barro Colorado Island (BCI, Panama). Simulations with prescribed 
reanalysis forcing data predicted carbon fluxes within the range of available esti-
mates at BCI and captured diurnal and seasonal response variability in forest 
productivity. The model also captured first-order variability in individual growth 
rates between canopy and understory trees. Importantly, simulations at multiple 
locations also captured large-scale, spatial gradients in forest biomass and key 
emergent properties like variability in tree size structure across the tropics (27). 
In LM4.1, the distribution and abundance of tropical forests reflects the outcome 

Fig. 5. Distribution of the relative rates of biomass increase (r
Bm

, y−1) simulated by GFDL-ESM4.1, EC-Earth3-Veg, and other CMIP6 ESMs (CESM2, CNRM-ESM2-1, 
MRI-ESM2-0, and NorESM2-LM; see SI Appendix, Table S1 for further details) under scenario SSP5-8.5. Relative rates were calculated as the natural logarithm of 
the ratio of annual woody biomass between consecutive years during the period 2015 to 2100. (A) Empirical cumulative distribution function of simulated r

Bm
.  

(B) Relationship between r
Bm

 and carbon emissions to the atmosphere due to fires (fire emissions, kg C m−2 y−1) in EC-Earth3-Veg and GFDL-ESM4.1 models.
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of competitive interactions with other vegetation types modulated by climatic 
constraints on physiological performance. The model simulates the dynamics 
of five vegetation types that compete among them for light and water (tropical, 
temperate, and conifer trees, and C3 and C4 grasses).

CMIP6 Experiments. Our core analyses focused on GFDL-ESM4.1 simulations 
developed as part of the CMIP6  (26). We retrieved the output of concentra-
tion-driven 21st-century experiments (2015–2100) under the two ends of the 
plausible SSPs, SSP1-2.6 and SSP5-8.5 (30). Scenario SSP1-2.6 represents the 
most benign future pathway, with radiative forcing increasing up to 2.6 W/
m2 in 2100 (similar to RCP2.6 global forcing pathway in CMIP5) and SSP1 
socioeconomic conditions (policies favoring sustainability and low challenges 
to mitigation and adaptation). On the contrary, scenario SSP5-8.5 reaches  
8.5 W/m2 in 2100 (similar to RCP8.5) and features SSP5 socioeconomic con-
ditions (fossil-fueled development with high challenges to mitigation and low 
challenges to adaptation).

We classified GFDL-ESM4.1 grid cells based on Köppen climate classifica-
tion using monthly temperature and precipitation climatologies for the period 
1951 to 1980. We selected those cells classified as tropical rainforest Köppen 
climate for further analyses. With respect to the use of a predefined window, this 
filtering step avoided prevailing biases in the simulation of precipitation over 
the tropics by ESMs (51). We focused on the projected dynamics of the biomass 
of natural tropical forests [i.e., tiles that were unaffected by changes in land use 
during the simulation and with an initial tree biomass above 5 kg C m−2, a fig-
ure which provides a threshold to identify areas covered by forest (52)]. We also 
retrieved historical concentration-driven simulations (1980 to 2014) to assess 
model performance in relation to forest plot inventory data and fire products 
derived from remote sensing data (see below).

We complemented the analyses of GFDL-ESM4.1 with a comparative assess-
ment of future trends in tropical carbon stocks in other ESMs contributing to 
CMIP6. We selected those models reporting trends in woody biomass (cWood) 
and fire diagnostics (fFire) over entire cells for scenario SSP5-8.5 (n = 6, see 
details in SI Appendix, Table S1). We retrieved time series of woody biomass at 
grid cells located in the Amazon and covered by forests, averaging experiments 
across multiple variant labels (ensembles), if available.

To assess the robustness of the projected decline in Amazon precipitation, 
we compared precipitation trends in a large subset of CMIP6 ESMs experiments 
under scenario SSP5-8.5 (n = 21, ESMs listed in SI Appendix, Table S2). We fol-
lowed ref. (24) and analyzed changes in total precipitation over October–March 
in the Neotropics for the period 2015–2100.

Prescribed SST Simulation Experiment. We conducted a simulation experi-
ment to test the sensitivity of abrupt forest losses observed in GFDL-ESM4.1 to 
potential biases in simulated weather conditions, especially precipitation extremes 
associated with sea surface temperature (SST) anomalies over the adjacent tropical 
oceans (i.e., remote effects of ENSO and AMO state). To do that, we forced GFDL-
ESM4.1 atmosphere with the SST fields simulated by EC-Earth3-Veg model under 
scenario SSP5-8.5. As detailed in SI Appendix, Table S1, EC-Earth3-Veg implements 
dynamic vegetation and fires, but consistently projects a net increase in woody 
biomass between 2015 and 2100 (SI Appendix, Fig. S22). The experimental setup 
required adapting the resolution of some fields and the spatial extent of model 
domains (e.g., ts, siconca) in EC-Earth3-Veg to match GFDL-ESM4.1 specifications. 
The simulation experiment started from the state of GFDL-ESM4.1 at the end of 
CMIP6 historical period (2015-01-01) and continued under scenario SSP5-8.5 
until the end of the century, using standard protocols and a dynamic atmosphere 
and land, but using EC-Earth3-Veg SST and sea ice concentration fields.

Fire and Climatic Data. To assess the ability of GFDL-ESM4.1 to reproduce the 
impact of natural fires on vegetation, we retrieved monthly, quarter degree reso-
lution maps for the period 1997 to 2014 from the Global Fire Emissions Database, 
Version 4.1 (GFED4s, http://globalfiredata.org/index.html), a product based on 
Moderate Resolution Imaging Spectroradiometer (MODIS) images. We focused 
on two metrics characterizing the extent and intensity of natural fires: total burned 
area, which included small fires and that was converted to burned area fraction 
(53), and daily fire carbon emissions to the atmosphere, which were adjusted 
to an annual emission rate (54) (hereafter fire C emissions, kg C m−2 y−1). The 
estimates provided by this product are conservative and tend to underestimate 
small fires (32).

We conservatively interpolated the original data to the model grid resolution 
and compared observed and simulated fires in a geographical and in a climate 
space (i.e., with coordinates defined in terms of mean annual precipitation and 
temperature). The latter approach complemented the assessment of fire extent 
and intensity to further examine whether GFDL-ESM4.1 fires occur under the 
right weather conditions. Monthly, one degree resolution temperature and pre-
cipitation maps for the period 1997 to 2014 were retrieved from Berkeley Earth 
reanalysis (http://berkeleyearth.org/data), and from NOAA Global Precipitation 
Climatology Center (GPCC, Total Full 552 V2018, https://psl.noaa.gov).

Climatic Indices. We analyzed the relationship between annual changes in 
carbon fire emissions in South America and two climate teleconnection indices: 
ONI and AMO. The analyses follow the approach in ref. (34), which established 
a predictive link to forecast the number of fires observed in the Amazon during 
the dry season based on ONI and AMO. We conducted the analyses both on ESM 
projections from the subset of CMIP6 ESMs with dynamic vegetation and fires 
(SI Appendix, Table S1) and on observational fire datasets (see above), which 
provided a benchmark to assess the reliability of simulated fires.

ONI was calculated from monthly time series of averaged sea surface tempera-
ture anomalies over the box [5°N-5°S, 120°W-170°W; Pacific Ocean]. We followed 
the methods of NOAA Climate Prediction Center and used a 30-y moving window 
to calculate SST seasonality (window updated for each pentad) and smoothed the 
resulting anomalies with a 3-mo moving average. AMO was calculated following 
ref. (55): monthly sea surface temperature anomalies were averaged over the box 
[75°W–7°W, 25°N–60°N; North Atlantic Ocean]. Then, to remove the trend due to 
anthropogenic climate change, we regressed the series against global sea surface 
temperature and retained the residuals, which were further smoothed using a 5-y 
moving average. See ref. (25) for an extensive assessment of climate variability in 
GFDL-ESM4.1 and ref. (36) for a comparative analysis of the CMIP6 ESM ensemble.

For each Neotropical grid cell, we determined the timing of the seasonal peak 
in fires over the historical period (SI Appendix, Fig. S15), which was calculated 
as the (circular) average month with the highest fire carbon emission. Then, we 
identified the optimal lag for each location based on the estimated correlation 
between annual fire carbon emission and each of the climate indices (ONI, AMO) 
lagged month by month up to 12 mo before the peak in fires. Finally, we modeled 
annual fire emissions as a linear combination of the two climate indices sampled 
during the month of maximum correlation:

Cfire(x, t) = a(x) +b(x) ×ONI
(

t,m(x) −�
ONI(x)

)

+ c(x) × AMO
(

t,m(x) −�
AMO(x)

)

,

where x and t  are location and year indices, respectively, m (x) is the peak 
fire month at each location, and �ONI and �AMO are the optimal lag times for ONI 
and AMO, respectively.

Evaluation of Forest Biomass and Structure. We examine the ability of the 
model to reproduce i) large-scale gradients in forest biomass, ii) tree size distribu-
tion, and iii) trends in carbon gains in the tropics. We first compared Above Ground 
Biomass (AGB) reconstructions derived from forest plot estimates (56) across the 
tropics with GFDL-ESM4.1 estimates. Each forest plot was assigned to the nearest 
model grid cell to extract average biomass during the last 5 y of the historical 
simulation (2010 to 2014). AGB observations located in the same model grid 
cell were averaged before the analysis. Then, we assessed the ability of the model 
to reproduce forest size structure (i.e., the abundance of trees at different size 
classes). We retrieved data from BCI (http://ctfs.si.edu) forest plot to estimate the 
size spectrum after pooling data for all individuals recorded in the 2010 census.

Finally, we compared trends in carbon gains during the historical period 
in GFDL-ESM4.1 with the field estimates reported by refs. (1)  and (2) for the 
Amazon. These authors reconstructed time series of the net carbon sink and the 
corresponding gains and losses based on estimates of tree growth, recruitment, 
and mortality from a large set of intact tropical forest census plots. To retrieve a 
comparable figure from GFDL-ESM4.1 output, we analyzed annual increases in 
the biomass of each cohort of the tropical tree vegetation type. As above, GFDL-
ESM4.1 estimates are based on historical experiments ran with prescribed CO2 
levels. Note that GFDL-ESM4.1 is a free running model with interactive atmos-
phere, ocean, and land components. Thus, we expect GFDL-ESM4.1 to capture the 
long-term trends in the carbon gains, but to resemble high-frequency variability 
out of phase.D
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Data, Materials, and Software Availability. Data analyzed in the manuscript 
are publicly available through the CMIP6 repository (https://esgf-node.llnl.gov/
search/cmip6/). See SI Appendix, Table S1 for accession codes. GFDL ESM4 code 
is provided at http://doi.org/10.5281/zenodo.3836405.
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